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Abstract 

We describe a multi-objective approach to the scheduling 
problem presented by the future NASA Deep Space Array-
Based Network (DSAN), the communications system that 
will support missions from high earth orbit to the outer 
planets. The DSAN is envisioned to consist of several large 
arrays of smaller antennas that can be flexibly combined for 
each spacecraft communication session. This is in contrast 
to today’s Deep Space Network (DSN), which typically re-
lies on a single large antenna to handle each spacecraft con-
tact. Multi-objective techniques for schedule optimization 
have the attractive advantage of explicitly capturing the con-
straints and preferences of the missions, as well as those 
based on system-level considerations, thus providing unique 
insight into trade-offs among competing requirements. We 
have investigated problem representation issues, objective 
and constraint formulations, and multi-objective optimiza-
tion techniques that can be applied to this problem. Evolu-
tionary multi-objective algorithms appear particularly prom-
ising. We have developed a testbed for investigating and as-
sessing these algorithms, and describe our initial results on 
an illustrative sample problem, and on an estimated 2015 
mission set with a three site, 300 antenna array.  

Introduction 
Plans for the evolution of NASA’s Deep Space Network 
(DSN) feature the development of an arraying capability 
that will link together large collections of less expensive 
smaller antennas as required to support the communica-
tions requirements of future missions. As this development 
occurs, the current network scheduling process will have to 
move towards a much greater degree of automation. This 
paper describes an approach to automated scheduling of 
the Deep Space Array-Based Network (DSAN) that explic-
itly recognizes and supports one of its essential characteris-
tics, namely, that it is designed to serve a diverse and com-
peting user community.  
 In the following we first describe the expected character-
istics of the DSAN and how its scheduling will likely be 
driven by mission and system requirements. We also dis-
cuss the kinds of objectives and constraints that are ex-
pected to apply to the DSAN. Next we briefly describe the 
nature of multi-objective optimization in general, and evo-
lutionary algorithms that are proving successful in a variety 
of other problem domains. We formulate the DSAN  
scheduling problem as a multi-objective optimization prob-
lem, and apply evolutionary algorithms both to a simple 

example problem, and to a model mission set for 2015. We 
conclude with a description of preliminary results and 
plans for further research. 
 The scheduling problem posed by the DSN as it exists 
today has been described in (Clement and Johnston 2005; 
Johnston and Clement 2005). There is a long history of 
efforts to automate various aspects of DSN operations, 
based on techniques such as heuristic search, linear pro-
gramming, and iterative repair (Bell 1992; Kan, Rosas and 
Vu 1996; Chien, Hill, Govindjee et al. 1997). This effort 
continues today, and will merge into the development and 
deployment of the DSAN. 

Deep Space Array-Based Network Scheduling 
Although the DSAN is years from deployment, certain of 
its characteristics are known or can be estimated from to-
day’s DSN and the state of current array technology (Bagri 
and Statman 2004; Gatti 2004; Statman and Gatti 2006). 
Current concepts (Figure 1) call for multiple sites, similar 
to today’s three sites, spaced roughly equally in longitude. 
The sites may have similar antenna configurations, but 
there is also the possibility of an unbalanced network with 
a significant difference in capability from one site to an-
other.  
 The drivers on the development of the DSAN come 
from a number of sources. The number of missions is in-
creasing (3x by 2030), as are data rates and volumes (100x 
or more by 2030) and communications difficulty (due to 
the combination of higher data rates and greater distance). 
Manned missions place extremely stringent requirements 
on availability and reliability. There are more “cluster” 
(multi-spacecraft) missions planned in the future. There is 
pressure on the current DSN operations to reduce costs 
while retaining high levels of service availability 24x7. 
The current DSN large antenna assets are aging and have 
high maintenance and replacement costs. One of the goals 
of a DSAN is to reduce operations and maintenance costs 
by a significant factor over today’s DSN, while providing 
service to a larger and more demanding mission set. Auto-
mation of the DSAN planning and scheduling functions is 
one of the most important elements of the approach to re-
ducing costs. 
 An array-based network offers a number of advantages 
compared to the current DSN. Allocation of antennas can 
be more granular: anywhere from a single antenna to the 
entire array can be allocated to a pass, depending on need, 
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where a pass is defined as a specific allocation of antennas 
to missions over some time interval. Multiple simultaneous 
passes can be handled by subsets of the array. Antenna 
allocation can be time-phased, even within a single pass: 
for example, more antennas can be dedicated to the start 
and end of a pass when the spacecraft is at a lower eleva-
tion. Unused antennas could be switched in to support a 
pass in case of equipment failure or spacecraft emergency. 
Thus the array will be much more flexible, but will conse-
quently require an approach to planning and scheduling 
that can take advantage of this flexibility. 
 

Figure 1: Conceptual overview of DSAN operations 
 
 While there are many compelling advantages of a 
DSAN, there are also some major challenges. The shift to 
higher frequency (Ka band in particular) makes communi-
cations more sensitive to weather than before (much less of 
an issue for X and S bands). There will also be array-
specific constraints, for example that a sufficient number 
of signal combiners be available to support the scheduled 
number of simultaneous passes. There may also be con-
straints on the physical subset of antennas that can be allo-
cated to a pass, e.g. based on antenna spatial location 
within the array. 
 It is important to note that the DSAN will almost cer-
tainly not be developed as a parallel network with a cut-
over point from the current DSN. Instead, the development 
is likely to be incremental over a number of years, so that 
there will exist a heterogeneous system with both array 
components and large antennas. A viable automation ap-
proach must take this likely evolutionary path into account. 

Mission Requirements 
As with today’s DSN, the array will serve a diverse com-
munity of mission users. Missions place a variety of con-
straints and preferences into their requests for communica-
tions services (Clement and Johnston 2005). Many re-
quests are for data downlinks, such as science or engineer-
ing data collected in the course of normal mission opera-
tions. Uplinks are required to send commands and table 
loads. Other requests are for support for navigation and 
control, such as precisely locating a spacecraft in order to 

plan for maneuvers and course corrections. In the profile 
for many missions are certain critical events, where com-
munications coverage is especially important: examples 
include engine burns for trajectory correction maneuvers, 
and orbit insertion around planetary targets. And when 
anomalies occur, missions often have sudden requirements 
for additional communications to diagnose and recover the 
spacecraft. In addition to spacecraft operations support 
there are other categories of users, such as those using the 
network assets for radio science and radio astronomy. 

Scheduling Objectives: Mission Perspective 
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To formulate an optimization problem for DSAN sched-
ules it is necessary to quantify the objectives to use in their 
evaluation. From the mission perspective, these objectives 
can be categorized based on how they relate to the sched-
ule: 
• pass-based objectives: these are defined in terms of 

specific allocations of antennas to a mission over some 
time interval, designated a “pass”. For example, the 
assignment of 25 antennas at Goldstone to a specific 
mission during a specified 6-hour visibility period 
would represent a single pass. A scheduling objective 
may be defined with respect to specific attributes of 
the pass, including its duration, timing relative to other 
passes or to a specified absolute time, etc. 

• service-based objectives: defined at a higher level than 
passes, these measure mission needs in terms of how 
well a service requirement is satisfied. For example, a 
mission could specify that it needs an 8-hour downlink 
at a certain data rate, every 3 days over some mission 
phase. A candidate schedule can be evaluated in terms 
of how well it satisfies the service requirement. 

• model-based objectives: at an even higher level, objec-
tives in this category require the scheduler to model 
some aspect of the mission behavior in order to assess 
the schedule. For example, the preceding case of an 
8 hour pass every three days may actually be derived 
from a mission’s average science data collection rate 
plus onboard storage capacity. Were the scheduler to 
have insight into the actual mission science plan and 
onboard recorder usage, it could schedule passes that 
more accurately fit with missions needs: more passes 
in periods of high data collection, fewer when data 
rates are lower.  

 In today’s DSN scheduling process, requirements are 
often formulated in pass-based or service-based terms, with 
the intention to move to a purely service-based specifica-
tion as the DSAN comes online. While it might make sense 
in today’s DSN for a mission to request the 70m Goldstone 
antenna for a particular downlink window, in the DSAN 
era it is not feasible for a mission to request a specific sub-
set of a site’s 400 antennas. Model-based objectives are 
presently not used in DSN scheduling, although it is clear 
that a better fit to mission needs could be possible if they 
were, as well as greater flexibility in constructing and 
modifying schedules in reaction to unexpected events. 



 Table 1 lists a subset of downlink service-based objec-
tives that we have incorporated in the scheduling model 
described in this paper. This is by no means a complete 
list, but does capture many of the factors that relate to the 
timing of communications service requests.  
 

Objective Description 
contact du-
ration 

min and max limits on duration, 
where a contact is the union of the 
coverage intervals of overlapping 
passes 

contact gap 
duration 

min and max limits on the sizes of 
any gaps between contacts 

pass dura-
tion 

min and max limits on individual 
pass duration 

gap duration min and max limits on the sizes of 
any gaps between individual passes 

coverage 
fraction 

fraction of some specified time inter-
val with scheduled contact coverage 
(e.g. “1” means continuous coverage) 

coverage 
level 

number of distinct passes simultane-
ously providing coverage (e.g. “2” 
would mean simultaneous coverage 
at two different sites) 

total gap 
duration 

total gap in coverage over a specified 
interval 

pass time 
shift 

how much a pass has shifted in time 
from some baseline requested time 

objective out 
of limit 

extent to which an objective value 
exceeds a specified limit 

Table 1: Objectives on communications timing, coverage, 
and gaps that may be relevant to a mission 
 
 It is worth noting that the definition of a mission’s ob-
jectives is often not monolithic: many missions comprise 
multiple teams (e.g. based on the instrumentation on a mis-
sion), and so the detailed mission objectives are frequently 
the result of an internal evaluation, compromise, and trade-
off process. 
 The allocation of antennas in today’s DSN is typically 
one by one, with the exception of certain special cases that 
make use of multiple antennas. In the array era, a more 
detailed model of downlink margin makes it possible to 
allocate differing numbers of antennas, depending on the 
power to noise ratio Pt/No of the link. For example, at low 
elevation, attenuation in the earth’s atmosphere means that 
a larger number of antennas are necessary to adequately 
receive transmissions sent at a certain power level, but 
closer to the zenith the same transmission can be received 
with fewer antennas (e.g. Figure 2). A mission may specify 
one or more transmitter configurations, each of which will 
imply a certain minimum number of antennas, as a func-
tion of time, during a visibility period. In addition, weather 
uncertainties might suggest that additional antennas be 
allocated, or at least held in reserve, should atmospheric 
conditions have a larger impact than anticipated. 

Scheduling Objectives: System Perspective 
We can collect all of the non-mission objectives into a sin-
gle “system” user, reflecting responsibilities for operations 
of the DSAN from the site level on up. System objectives 
fall into several categories: 
• satisfy the users of the system: as the fundamental pur-

pose of the network is to service users, this is clearly a 
critical objective. However, because we consider ex-
plicitly the degree of satisfaction of each mission’s ob-
jectives, we do not need to separately include them 
again here.  

• minimize operational costs: while clearly an objective 
of the overall system, there is likely to be little that 
impacts this from the scheduling point of view. On the 
assumption that scheduling itself will be highly auto-
mated, as will operation of the antennas and associated 
electronics, then the cost of executing one specific 
schedule will be similar to another.  

• maximize system availability: this is the core objective 
of automated scheduling, in that effective scheduling 
can increase the real capacity of a given system. In this 
situation, the objective is to maximize the number of 
users that can be serviced for a given investment in as-
sets and infrastructure. For a fixed number of users, 
another way to formulate this is to maximize the num-
ber of available unallocated antennas, since these can 
be used to mitigate risk and react to unexpected 
events, ranging from ground failures, bad weather, op-
portunistic science, or spacecraft emergencies. 

 A number of operations policies fit in with the system 
level objectives. For example, the approach to maintenance 
could be that antennas are out of service for scheduled 
maintenance on a pre-determined basis. Alternatively, the 
scheduling of maintenance can itself be optimized along 
with other objectives, thus allowing e.g. for adjustments to 
the maintenance timeline when the result benefits the over-
all schedule. Another policy issue is that of mission priori-
tization: whenever there is contention for resources, a 
scheduling solution can be sought but is not always avail-
able. In this case a decision must be made in favor of one 
or the other of the contending users. This will be discussed 
further below in the context of multi-objective optimiza-
tion. 

Constraints 
Constraints are scheduling factors that must be satisfied in 
order for a schedule to be feasible. Like objectives, they 
may be considered from mission and system perspectives.  
 Mission constraints on the DSN schedule may be formu-
lated in terms similar to objectives, with the significant 
difference being their importance. For example, during a 
mission critical event, what might otherwise be a prefer-
ence for communications timing can be elevated to the 
highest level of importance.  
 System constraints include those based on resource 
availability, for example, the number of antennas available 
at a site as a function of time, or the availability of required 



electronics. One constraint expected for the DSAN is that 
each separate simultaneous pass requires a signal com-
biner, of which there are a limited number at each site. 
There may also be constraints on the spatial configuration 
of antennas that can be used in a single pass.  
 To the extent that constraints can be formulated as quan-
titative measures on the schedule that represent degree of 
violation of the constraint, they may be regarded as similar 
to objectives: we seek schedules that minimize constraint 
violations. This is important because a particular schedul-
ing problem may have no feasible solution, so we need to 
determine which constraint relaxations might be consid-
ered. This suggests that a problem formulation that treats 
objectives and constraints similarly can be very useful. 

Multi-Objective Optimization 
In the DSAN scheduling problem there are potentially nu-
merous objectives from the missions and other users, as 
well as from the overall system level. Conventional ap-
proaches to schedule optimization would combine these 
into a single objective value to optimize, as in e.g. 
(Cheung, Lee and Ho 2005). However, there is a signifi-
cant drawback to this approach, in that it pre-specifies the 
tradeoffs among the different objectives in the common 
and interesting case where there is no solution that simul-
taneously optimizes all of the separate objectives. That is, 
for any given value of the combined single objective, the 
results of optimization will not distinguish between cases 
where any one mission’s objectives are satisfied anywhere 
from fully to not at all. From the perspective of a mission 
or user, such an optimization process is at least cause for 
concern. 
 An alternative approach is to use multi-objective optimi-
zation techniques, which retain the information in separate 
objectives until the end of the optimization process: see 
e.g. (Collette and Siarry 2003) and references therein. 
When there remains contention to be resolved, a multi-
objective approach will provide explicit information about 
the tradeoffs involved. Such visibility is important to users 
who may be required to compromise on the achievement of 
their objectives.  
 Among techniques developed to solve multi-objective 
optimization problems, evolutionary algorithms (Bagchi 
1999; Deb 2001; Madavan 2002; Abraham, Jain and Gold-
berg 2005; Kukkonen and Lampinen 2005; Robic and 
Filipic 2005) have become popular for a variety of reasons. 
They are capable of dealing with objectives that are not 
mathematically well behaved (e.g. discontinuous, non-
differentiable). A solution is Pareto-optimal when no im-
provement can be made to one objective which does not 
make worse at least one other objective. Because evolu-
tionary methods maintain a population of solutions, they 
can trace out the Pareto frontier, an approximation to the 
entire set of Pareto-optimal solutions. Evolutionary algo-
rithms also lend themselves to parallelization, which can 
be an advantage for large problems. Two important per-
formance characteristics of a multi-objective evolutionary 

algorithm are convergence to the Pareto frontier, and di-
versity so as to maximally sample the frontier. 
 In the following we describe evolutionary algorithms for 
multi-objective optimization in general, then two specific 
variants that we have explored for applicability to DSAN 
scheduling. 

Evolutionary Algorithms 
The problem we consider is minimizing a set of M objec-
tives subject to K constraints: 

minimize: ( ){ }xfi
r

, Mi K1=  

subject to: ( )( ) 0≤T
j xg
r

,  Kj K1=

Here x
r

 represents a vector in decision space of dimension 
D. Where necessary below, we refer to the ith member of 
the population at generation g with gix ,

r
. 

 An evolutionary algorithm formulation for multi-
objective optimization consists of a population of N solu-
tion candidates. With each step (generation) of the algo-
rithm, we evolve the population according to method-
specific rules for crossover and mutation. Crossover com-
bines elements of parent solution candidates to generate a 
new offspring candidate for evaluation. Mutation intro-
duces randomized variation in the offspring. 
 Depending on the procedure, following the crossover 
and mutation steps the size of the population may have 
increased. If so, it is reduced back to N through a selection 
procedure. The overall process repeats, with a cutoff gen-
erally determined by a specified maximum number of gen-
erations Gmax. 
 
NSGA II. This algorithm, developed by (Deb, Pratap, 
Agrawal et al. 2002) has done well on a variety of test 
problems and applications. The specifics of this algorithm 
include: 
• non-dominated sorting of the population into ranks, 

such that members of rank n dominate members of all 
ranks >n. Rank 1 members constitute the non-
dominated set, that is, the current approximation to the 
Pareto frontier. 

• crowding distance is used as a secondary discriminator 
on members of the same rank: members in crowded 
regions are scored lower, so the surviving members af-
ter selection have greater diversity. This helps prevent 
premature convergence. 

• members are compared with a domination or con-
strain-domination relation – the latter allows for com-
parisons even when constraints are violated. 

The algorithm is elitist, in that highest ranked solutions are 
preserved from one generation to the next. 
 
GDE3. GDE3 is a recent algorithm (Kukkonen and 
Lampinen 2005) that uses Differential Evolution (DE) 
(Price, Storn and Lampinen 2005) as the basis for cross-
over and mutation operations, and non-dominated sorting 



and crowding distance in a manner similar to NSGA II. DE 
is an evolutionary algorithm for optimization, initially de-
veloped in a single objective context. DE is defined on 
real-valued decision spaces. It generates offspring through 
the following procedure: 

1. For each parent ix
r

, select three distinct population 
members 

321
,, rrr xxx
rrr

, all different and different from 
parent 
2. Calculate a trial vector iy

r
 as:  

 ( )
321 rrri xxFxy

rrrr
−⋅+=   

where F is a scaling factor 
3. Modify the trial vector by binary crossover with par-
ent with probability CR 

The result is compared with the parent as follows: 
• in the case of infeasible vectors, the trial vector is se-

lected if it weakly dominates the parent vector in con-
straint violation space, otherwise the parent vector is 
selected 

• in the case of feasible and infeasible vectors, the feasi-
ble vector is selected 

• if both vectors are feasible, then the trial is selected if 
it weakly dominates the parent in objective space; if 
the parent dominates the trial, then the parent is se-
lected, and if neither dominate, then both are selected 

The selected vectors may constitute a set of size >N, in 
which case the population size is reduced through the non-
dominated sorting and crowding distance mechanism of 
NSGA II. 
 GDE3 is appealing for several reasons: it provides a 
natural treatment of the K constraints, while reducing to 
standard DE when the number of objectives M=1. The 
treatment of constraints makes it straightforward to change 
constraints into objectives when investigating overcon-
strained problems. GDE3 performed very well in initial 
comparisons with NSGA II, and does not introduce any 
additional control parameters beyond F and CR from the 
original formulation of DE. 

Multi-Objective Formulation of  
DSAN Scheduling 

In its basic form, DSAN scheduling requires the decision 
of which antennas and other site resources to allocate to a 
mission, as a function of time. We consider a network 
modeled as one or more sites, each with associated re-
sources such as antennas, combiners, etc. Each resource 
type has a quantity that may vary over time, e.g. as new 
antennas are brought online, or when electronics is taken 
out of service for a maintenance period. Resources are non-
consumable and, within their category, indistinguishable. 
So, for example, if a mission requires 25 antennas for an 
array link, it does not matter for scheduling purposes which 
25 are allocated. For simplicity below, we consider only 
antennas as a resource, but there is no limit on the alloca-
tion of multiple resources. 

 We consider a user collection of U users (i.e. missions 
and other users), over some scheduling time period 

. Associated with each user is a set of view peri-
ods, each of which is a time interval during which some 
variable number of antennas at one site may be allocated. 
We denote the view periods by , where 

],[ es TT

],[ e
up

s
up VV

Uu K1= ranges over users, and ranges over the 
set of view periods for each user. The minimum required 
time-varying antenna profile is given by 

uPp K1=

( )up
req
up VtA ∈ , 

which may differ from one view period to another. Above 
the minimum required level, additional antennas might be 
allocated, e.g. to improve signal strength in the face of un-
certain weather: we denote the maximum additional alloca-
tion by . upΔ

Decision variables. To encode the problem in a way that 
preserves neighborhoods, so that a small perturbation in 
the value of the decision vector will (usually) result in a 
small change to the scheduled allocation, we define the 
following correspondence between decision variables and 
resource allocation (see Figure 2), suppressing the up sub-
scripts: 

1. For each view period, define a triple of real-valued 
decision variables [ ]1,0,, 321 ∈ξξξ  
2. Calculate the start and end of the allocated portion of 
the view period as: 

)(1
sess VVVt −+= ξ  

)(2
sese tVtt −+= ξ  

3. Calculate the allocated antenna quantity as: 

)()()( 3Δ+= ξceiltAtA req  
 

(ξ1, ξ2, ξ3)time

# ant.
req.

min

max

# ant.
req.

time

Figure 2. Decision variables for array antenna allocation. 
 
This correspondence leads to the total number of decision 
variables D given by: 

∑ =
=

U

u uPD
1

3  

For concreteness, this corresponds to about 60 decision 
variables per mission per week. Note that if the antenna 
allocation quantity is constant, there is no need for a third 
decision variable 3ξ , and so it can simply be omitted. 



 We have adopted an approach of quantizing time in the 
schedule in order to calculate quantities such as resource 
loading and coverage and gap measures. This quantization 
can be straightforwardly incorporated in the above calcula-
tion, noting that if a view period contains m intervals, we 
quantize to m+1 so that zero can correspond to the deci-
sion to not allocate any resources in the view period. 
Objectives. We have taken the approach in our initial ex-
periments that each modeled user specifies a single objec-
tive function in the form of a penalty to be minimized. The 
objective may be made up of an arbitrary number of addi-
tive phases that delimit a time period over which the com-
ponent penalty calculation is made. For example, a mission 
might have one phase that requires relatively infrequent 
periodic coverage, followed by a phase that requires con-
tinuous simultaneous coverage at two sites. Associating a 
penalty calculation with a phase makes it straightforward 
to define the correct behavior in each. 
 Components of the penalty function may correspond to 
any of the objectives listed in Table 1. The calculation of 
objectives proceeds as follows: 

1. Convert the decision variable values into allocation 
parameters following the prescription above 
2. Calculate a “user perspective” view of the schedule, 
including coverage levels and gaps, based on resource 
allocations for that user. This calculation takes into ac-
count boundary effects that affect gap and coverage pen-
alties. 
3. Loop over each modeled user phase and component, 
calculating the deviation from full satisfaction, and ac-
cumulating the result as the penalty function measure. 

Constraints. Constraints are implemented like objectives, 
i.e. a collection of phase-specific penalty calculations 
whose values are to be minimized in a multi-objective 
sense. Modeled users may have zero or more associated 
constraints. There is also a “system” user representing non-
mission constraints. For example, the constraint that an-
tenna allocation must not exceed the available quantity is 
modeled as a system constraint over a phase corresponding 
to the entire schedule. 
Implementation. We have implemented a testbed for 
evaluating multi-objective DSAN scheduling, with the 
following features: 
• generic models of networks and resources, and users 

and their requirements, to facilitate experiments with 
different scenarios 

• pluggable evolver modules, to make it easy to vary 
algorithms and parameters while running the same test 
problems 

• results recorded every g generations for graphical dis-
play and restart continuation 

Initial results are discussed in the next section. 

Results 

Example: two missions in contention 
We first describe a simple example that highlights the po-
tential of multi-objective optimization in this kind of prob-
lem. Consider a 2-mission scenario with the following 
characteristics: 
• two identical missions, user1 and user2, with periodic 

communications requirements 
• each mission requires a constant allocation of 

5 antennas for each link (constraint) 
• each mission requires contacts that are at least 3 hours 

in duration (constraint), with a preferred duration of 
12 hours (objective) 

• gaps between contacts are limited to 18 hours (con-
straint) 

• the scheduling interval is 4 days in duration 
• both missions have the same 12 hour view period each 

day 
• a single site with a fixed number of 10 antennas is 

available at all times except day 2, when only 5 are 
available 

Were it not for the shortage of antennas on day 2, this 
problem would have a trivial solution where each mission 
could maximally achieve all of its objectives. As it is, there 
will be contention on day 2 for the available antenna re-
sources. When this problem is encoded as described above, 
it has the following characteristics: 
• two objectives: the penalty functions for user1 and 

user2  
• one constraint for each user, for minimum pass size 
• one system level constraint, to enforce antenna alloca-

tion levels to not exceed the available quantity 
• 16 decision variables, two for each user/viewperiod 

combination (antenna allocations are constant, so only 
two decisions variables per viewperiod are required) 

 Figure 3 shows the evolution of the non-dominated set 
after various numbers of generations using the GDE3 algo-
rithm. (Results for NSGA II were poorer, in terms of con-
vergence to the Pareto frontier and the uniformity of cov-
erage, and so are not included here.) The parameters in this 
run were: time resolution = 1 hour, population size N=400, 
F=0.5, CR=0.1. The initial conditions were uniformly ran-
dom within the bounds of the decision variable limits. 
 Initially (Gen#0, upper left), the population is nearly all 
constraint violated (red “x”), since a random decision vari-
able vector is very likely to exceed either the resources on 
day 2, or the minimum gap constraint. After 20 generations 
(upper right) the population has evolved to consist entirely 
of feasible solutions, and shifts to the lower left as increas-
ingly smaller values of the penalty values are discovered. 
By generation 140 (lower right) the population has evolved 
to the Pareto frontier for this problem. Values at the ex-
treme (user1.penalty=30 or user2.penalty=30) represent 
solutions where the available 5 antennas are allocated en-
tirely to the other mission. The remaining values along the 
frontier represent partial allocations to each mission. The 



gaps in the curve reflect the constraint that solutions with 
pass durations <3 hours are excluded as not feasible. 
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Figure 3: Objective values for the two users, illustrating 
the evolution of the population towards the Pareto frontier 
with GDE3. An “x” (red) is an infeasible solution, and a 
filled circle (green) is in the non-dominated set. Open cir-
cles (blue) make up the rest of the population. 
 

Figure 4: The evolution of two of the decision variable 
values versus generation number. An “x” (red) indicates an 
infeasible solution, and an open circle (blue) a feasible one. 
 
 In Figure 4 we have plotted the values of two of the 16 
decision variables against each other, for a sample of popu-

lation snapshots. The variable labeled d2 corresponds to 
the start of the user1 allocation on day 2, and d11 to the 
duration of the user2 allocation. The initial random distri-
bution (generation 0, upper left) evolves into a strong cor-
relation (generation 160, lower right) that shows how the 
population has captured the relationship of these variables 
along the Pareto frontier. The bands at d2~0 and d11~1 
correspond to degeneracies near the extremes when time 
intervals are quantized. 
Tradeoffs and Prioritization. This example highlights a 
strength of multi-objective optimization, that of exposing 
the detailed nature of the tradeoffs when several objectives 
cannot be simultaneously optimized. However, it also illus-
trates the remaining problem of deciding which point on 
the Pareto frontier to actually select. There are a number of 
ways to approach this: 
• rank order the objectives, then select the optimal 

points for each in order 
• construct a weighted combination of objectives and 

select the solution that optimizes this value: this is 
similar to the multi-to-single objective mapping dis-
cussed above. It is less extreme than priority-based se-
lection, and if constructed with knowledge of the 
Pareto frontier, it can be much more informed. 

• allow the users who defined the objectives to negotiate 
among themselves to come up with an acceptable 
compromise. In contrast to the example here, where 
one user’s gain is the other’s loss, there are many real-
istic situations where users can “horse-trade” to advan-
tage. 

A 2015 mission set 
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A more extensive model has been constructed from an ex-
trapolated 2015 mission set using assumed 12m X-band 
arrayed antennas. The salient characteristics of this prob-
lem are: 
• 17 missions requiring from 1 to 94 antennas for each 

pass 
• periodic pass requirements ranging from every 8 hours 

to once per week, with pass durations ranging from 1 
to 12 hours, and a 20% flexibility in pass and gap du-
ration 

• three sites equally spaced in longitude, each with 100 
antennas 

• a one-week scheduling interval with one hour resolu-
tion 

This problem consists of 760 decision variables and 17 
objectives (one per mission user). Preliminary runs have 
been made for different population sizes and flexibility 
levels, with encouraging results. One measure of the be-
havior of the algorithm is the summed value of all the ob-
jectives for points on the non-dominated front. Since we 
are minimizing all objectives, the decrease in this sum 
gives some view into the “condensation” of the population 
to the Pareto frontier. The results are shown in Figure 5 for 
a run with a population size of 1,000 and a total of 20,000 
generations. When started with a uniform random distribu-
tion in decision space, the population starts out entirely 



infeasible. The first approximately 1000 generations are 
spent finding a feasible population, which then evolves 
progressively and rapidly to reduce the penalty values for 
all users. The rate of progress eventually slows, but contin-
ues to show steady progress as the number of generations 
increases. Since the minimum penalty function value for 
each user is defined to be zero, the summed value shows 
that the algorithm has come close to a configuration that 
optimizes the objectives of all users (the scale is such that a 
failure to satisfy a duration or gap preference by n hours 
would contribute n towards the penalty calculation).  
 

Figure 5: the summed value of objectives for population 
members in the non-dominated set, for a model 2015 mis-
sion set, scheduled for one week. 

Figure 6: Scaling of runtime versus population size, evalu-
ated for a single mission. The dashed line shows excellent 
agreement with the expected NlogN behavior. 

Scaling 
The scaling behavior of NSGA II and GDE3 is determined 
in both cases by the non-dominated sorting used in the 
selection and pruning step and is of order MN log(N) where 
M is the number of objectives and N the population size. 
The results shown in Figure 6 confirm the expected behav-
ior of runtime versus population size. 
 The major computational effort in assessing each sched-
ule is calculating resource utilization and mission coverage 
for the quantized timeline, then computing objective and 
constraint values. This calculation scales as the number of 
users U (for similar users) times the number of time inter-
vals in the schedule. Figure 7 shows the scaling behavior 
of the time to assess the schedule as a function of time in-
tervals per week. As expected, the behavior is linear. De-
pending on the time horizon, it may be adequate to sched-
ule with resolutions of 1 hour for very long range horizons, 
whereas a resolution of down to 1 minute may be required 
for the nearest term schedules. 
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Figure 7: Scaling of schedule assessment (objective and 
constraint calculation) scales linearly with resolution. 

Conclusions 
In this paper we have described a new approach to Deep 
Space Array-Based Network scheduling based on multi-
objective optimization techniques. Current evolutionary 
algorithms such as GDE3 appear to be promising candi-
dates for schedule generation and modification. The 
strengths of this approach include: 
• explicit and separate representation of different mis-

sions’ objectives, making it easy to consider tradeoffs 
• a population of non-dominated solutions that ap-

proximates the Pareto frontier, useful both in schedule 
selection and as a starting point when revising the 
schedule when changes occur 

 There are a number of areas that remain to be investi-
gated, and we have developed a testbed to facilitate this. 
Some of the areas of interest include: 



• investigating the impact of highly constrained prob-
lems on convergence properties: when feasible solu-
tions are hard to find, the first ones encountered in an 
evolving population may disproportionately channel 
the solution to their vicinity, leading to premature 
convergence 

• investigating the effect of different parameter choices 
(F and CR) for the Differential Evolution algorithm 

• reconsidering the crowding distance calculation for 
this problem: (Kukkonen and Deb 2006) have devel-
oped an improvement to the NSGA II calculation, and 
have pointed out some problems with the calculation 
for higher dimensional objective spaces 

 In addition, we plan to investigate other aspects of the 
array scheduling problem, including: 
• modifying an existing schedule quickly and effec-

tively, e.g. to model last minute resource availability 
changes, or requests for emergency contacts 

• modeling and scheduling multiple spacecraft per link, 
such as the missions presently at Mars 

• scheduling multiple resources, such as combiners or 
other equipment for which joint allocations must be 
made 

• investigating how to include maintenance scheduling 
into the framework as another optimization objective 

• investigating how to incorporate risk mitigation into 
the schedule, for example in optimally allocating un-
used antennas as a hedge against bad weather 

 
_______________________ 

 
The research described in this paper was carried out at the 
Jet Propulsion Laboratory, California Institute of Technol-
ogy, under a contract with the National Aeronautics and 
Space Administration.  
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